INTEGRATED 1 WATT AUDIO AMPLIFIER

A complete a.f. amplifier in monolithic integrated form incorporating special measures to prevent cross-over distortion throughout an exceptionally wide usable range of supply voltage (4.5 V to 10 V. This, in combination with its low drain current, makes the TAA300 ideally suited for use in battery operated equipment. Due to the high a.c. feedback (\approx 20 dB) the distortion and spread in gain is very low.

QUICK REFERENCE DATA					
Supply voltage	$v_{\rm B}$	nom.	, 9	V	
Output power	P_{O}	typ.	1	w	
Input signal for P _O = 1 W	$v_{\mathbf{i}}$	typ.	8.5	mV	
Input impedance	$ z_i $	typ.	15	kΩ	
Load impedance	$R_{ m L}$		8	Ω	
Total current (no signal)	I_{tot}	typ.	8	mA	

PACKAGE OUTLINE

Dimensions in mm

XA10 (TO-74; reduced height)

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages	(see	test	set-up	on	page	4)
VOILUECO	1000	COL	oct up	OIL	page	- 1

Voltages (see test set-up on page 4)				
	V ₄₋₁	max.	10.5	V
	v_{7-8}	max.	6	V
	v_{8-7}	max.	6	V
	v_{2-9}	max.	6	V
	v_{2-1}	max.	10.5	V
	V ₄₋₂	max.	10.5	V
Currents (see test set-up on page 4)				
	- I ₁	max.	600	mΑ
	$\pm I_2$	max.	600	mA
	+ 14	max.	600	mA
Total power dissipation	P_{tot}	see next page		
Temperatures				
Storage temperature	${ m T_{stg}}$	-55 to	+150	oC
Operating ambient temperature	T_{amb}	-55 to	+150	оС

RATINGS (continued)

Maximum allowable total power dissipation versus ambient temperature

CHARACTERISTICS at T_{amb} = 25 °C; V_B = 9 V

Measured in the test set-up on page 4

Output power at d _{tot} = 10% Bandwidth (-3 dB)	. P _o	typ. 25	
Total current (d.c.) no signal and excluding output transistors: with signal at P _o = 1 W:	I _{tot} I _{tot}	typ. 4	4 mA 0 mA
Total distortion at $P_0 = 0.5 \text{ W}$	d_{tot}	typ. 0.	7 % 3 %
$\frac{\text{Input signal at P}_{O} = 1 \text{ W}}{\text{P}_{O} = 0.5 \text{ W}}$	${\stackrel{V}{v}}_{i}$	typ. 8.	5 mV
Input impedance	$ z_i $	> 10 typ. 1	
Efficiency - Signal to noise ratio related to Po = 1 W	η	typ. 6	0 %
R _S = $2 \text{ k}\Omega$; B = 30 Hz to 15 kHz	$\frac{S}{N}$		0 dB 5 dB
Noise output power input short circuited; B = 30 Hz to 15 kHz	P_{N}		0 nW 0 nW
Preset resistor for I _{tot} = 8 mA	R_{pr}	4 to 2	5 kΩ

TEST SET-UP

To prevent high-frequency instability, the following precautions must be taken.

- a. Keep the lead inductance from the positive voltage supply to pin 4 to a minimum.
- b. Because of the high internal resistance of batteries (especially at end of life) a large capacitance should be connected between pin 4 and ground.
- c. A capacitor of at least 47 nF should be connected between pin 2 and ground to prevent instability of the lower Darlington output transistor (see also test set-up).
- d. Avoid coupling between output and input leads (especially those carrying signals from a high-impedance source). This coupling can be reduced by using short leads, shielded input cable or by limiting the upper frequency to 15 kHz by means of a capacitor of 560 pF between pin 7 and ground.

