

PRECISION FILM RESISTOR - MRS16S

FEATURES

- · Precision resistors in small outlines
- Low noise.

MARKET SEGMENTS AND APPLICATIONS

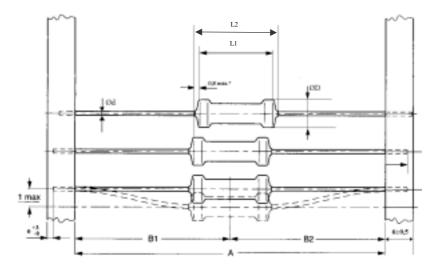
Industry sector	Application segment	End-user equipment	
		Electrical testers	
	Controls	Power system control	
Industrial	Controls	Instruments (measuring)	
Industrial		Surface scanners	
	Security	Electric fence energizer	
	Control/medical	Blood analyzers	
Automotive	Engine Management	Electronic Fuel Injection System	
Canaumar	Sound & Vision	Amplifiers, TV	
Consumer	Souria & Visiori	Professional audio equipment	

TECHNOLOGY

A homogeneous film of metal alloy is deposited on a high-grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires to the end-caps.

The resistors are coated with a green lacquer that provides electrical, mechanical, and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD 202E, method 215" e "IEC 68-2-45".

QUICK REFERENCE DATA


	MRS16S
DESCRIPTION	(E-24 / E-96 series)
	Cu-lead
Resistance range	4.99Ω to 1 M $Ω$
Resistance tolerance	± 1%
Maximum dissipation Tamb = 70°C	0.40W
Basic specifications	IEC 60115-1 and 60115-2
Climatic category (IEC 60068)	55/ 155/ 56
Thermal resistance (Rth)	170 K/W
Limiting voltage (DC or RMS)	200V
Rated voltage (1)	√ Pn x R
Temperature Coefficient:	≤ ± 50 ppm/ °C
Stability after:	
Load:	
R≤100KΩ	Δ R/R max.: ±0,5% +0.05 Ω
R>100ΚΩ	Δ R/R max.: ±1% + 0.05 Ω
Climatic tests:	
R≤100KΩ	Δ R/R max.: ±0.5% + 0.05 Ω
R>100KΩ	Δ R/R max.: ±1% + 0.05 Ω
Resistance to Soldering heat:	
R≤100KΩ	Δ R/R max.: ±0.1% + 0.05 Ω
R>100ΚΩ	Δ R/R max.: ±0.25% + 0.05 Ω
Short time overload	Δ R/R max.: ±0.25% + 0.05 Ω

Note:

¹⁻ Maximum rated voltage is the "Limiting voltage".

MECHANICAL DATA

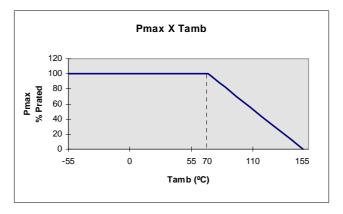
^{*} Max, displacement between any two resistors. Dimensions in mm.

Table 1.

Туре	Α	L1max	L2max	φd	Dmax	B1-B2	Mass per 100 units (g)
MDC16C	52 .5 ± 1.5	2.2	3.4	0.45 ± 0.05	1.0	± 1.2	11.5
MRS16S	26 ± 1.5	3.2	3.4	0.45 ± 0.05	1.9		8.0

Dimensions in mm

MOUNTING


The resistors are suitable for processing on automatic insertion equipment, cutting and bending machines.

ELECTRICAL CHARACTERÍSTICS

DERATING

The power that the resistor can dissipate depends on the operation temperature.

Maximum dissipation (Pmax) in percentage of rated as a function of the ambient temperature (Tamb)

APPLICATION INFORMATION FOR HOT-SPOT AND SOLDER-SPOT

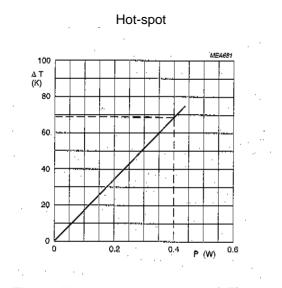


Fig. 1 - Hot spot temperature rise (ΔT) as a function of dissipated power.

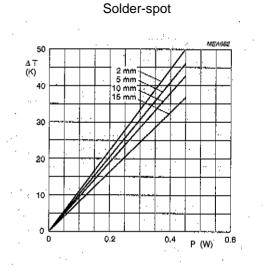


Fig. 2 - Temperature rise (ΔT) at the lead (soldering point) as a function of dissipated power at various lead lengths after mounting.

Note:

The maximum permissible hot-spot temperature is 155°C.

MRS16S

PULSE LOADING CAPABILITIES

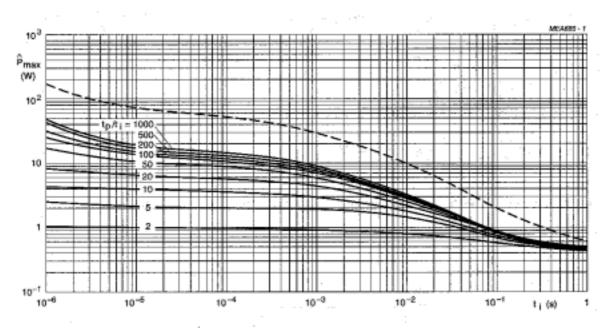


Fig. 3 - Pulse on a regular basis, maximum permissible peak pulse power (^Pmax) as a function of pulse duration (ti).

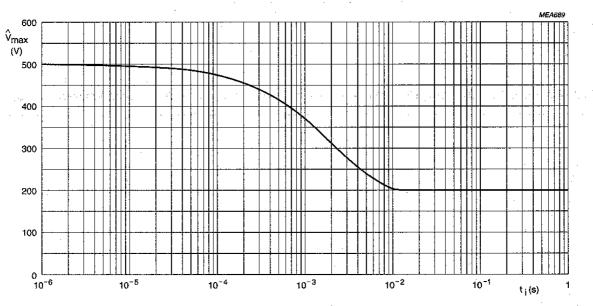


Fig. 4 - Pulse on a regular basis, maximum permissible peak pulse voltage (^Vmax) as a function of pulse duration (ti).

MARKING

The nominal resistance and tolerance are marked on the resistor using five colored bands in accordance with IEC publication 60062 "color code for fixed resistors.

Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of 1%. The values of the E24/E96 series are in accordance with "IEC publication 60063".

ORDERING INFORMATION

Table 2. Ordering code indicating resistor type and packaging

Table 2. Practing code indicating resistor type and packaging							
TYPE LEAD Ø (mm)			ORDERING CODE 23xx xxx xxxxx				
	IEVD		BANDOLIER IN AMMOPACK			BANDOLIER ON REEL	
			STRAIGHT LEADS				
	\mathcal{L} (IIIIII)		52.5 mm	52.5 mm	26 mm	52.5 mm	
		5000 units	1000 units	5000 units	5000 units		
MRS16S	Cu 0.45	1	22 157 2xxxx	22 157 1xxxx	22 157 4xxxx	22 157 3xxxx	

Note: For formed types see "Formed Types Specification"

ORDERING CODE

- The resistors have a 12 digit ordering code starting with 23.
- The first 6 digits indicate the resistor type and packaging see table 2.
- The remaining 4 digits indicate the resistance value.
 - -The first 3 digits indicate the resistance value.
 - -The last digit indicates the resistance decade in accordance with table 3.

Table 3. Last digit of 12NC

RESISTANCE DECADE	LAST DIGIT
4.99 to 9.76Ω	8
10 to 97.6Ω	9
100 to 976Ω	1
1 to 9.76kΩ	2
10 to 97.6kΩ	3
100 to 976kΩ	4
1 to 1MΩ	5

Example:

The ordering code for resistor type MRS16S with Cu leads and a value of 750Ω 1%, supplied on a bandolier of 1000 units in ammopack, is 2322 157 17501.

PACKAGING

Bandolier in ammopack.

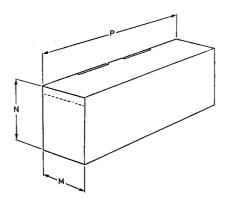


Table 4.

Туре	Quantity	M	N	Р	Bandolier Width
MRS16S	5000	78	98	260	50.5 14.5
	1000	71	31	140	52.5 ±1.5

Dimensions in mm

Bandolier on Reel

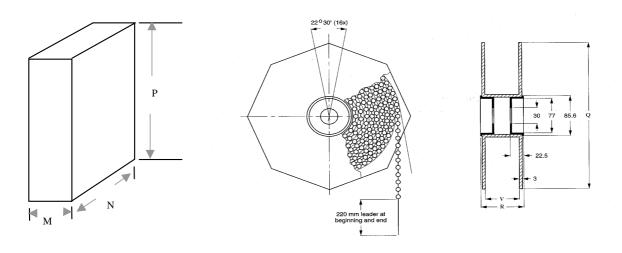


Table 5.

Туре	Quantity	М	N	Р	Q	٧	R	Bandolier Width
MRS16S	5000	92	273	273	267	75	86	52 .5 ±1.5

Dimensions in mm

TESTS AND REQUERIMENTS

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by IEA and IEAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1".

In table 6 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068-2, a short description of the tests procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with middle activated.

Table 6. Test procedures and requirements.

IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TESTS	TESTS PROCEDURE	
4.4.1		Visual examination		No holes; clean surface; no damage
4.4.2		Dimensions (outline)	Gauge (mm)	See Table 1
4.5		Resistance	applied voltage (+0/-10%): R<10Ω: 0.1V $10Ω \le R < 100Ω: 0.3V \\ 100Ω \le R < 1 kΩ: 1V \\ 1kΩ \le R < 10 kΩ:3V \\ 10 kΩ \le R < 100 kΩ: 10V \\ 100 kΩ \le R < 100 kΩ: 25V \\ R = 1MΩ: 50V$	R - Rnom: max.: ± 1%
4.6.1.1		Insulation resistance	100V _{DC} after 1 min, metal block method.	R_{ins} min.: 10^4 M Ω
4.7		Voltage proof on insulation	400V _{RMS} during 1min, metal block method.	No breakdown or flashover
4.8.4.2		Temperature coefficient	At 20/LCT/20°C and 20/UCT/20°C (TC x ppm/C)	≤ ±50 ppm / °C
4.12		Noise	R≤68KΩ R≤100KΩ R>100KΩ	Max. 0.1μV/V Max. 0.5μV/V Max. 1.5μV/V
4.13		Short time overload	Room temperature; P= 6.25x.0.25W; 5s on 45s off, 10 cycles (V≤2xVmax.)	Δ R/R max. ± 0.25% + 0.05 Ω
4.16	U	Robustness of terminations: Tensile other half of		_
4.16.2	Ua	samples Bending half number of	φ0.45mm, load 5N; 10s	Number of failures <10x10 ⁻⁶
4.16.3	Ub	samples Torsion other half of	φ0.45mm, load 2.5N; 4 x 90°	Number of failures < 10x10 ⁻⁶
4.16.4	Uc	samples	3 x 360° in opposite directions	no damage Δ R/R max. ± 0.1% + 0.05 Ω
4.17	20(Ta)	Solderability (after aging)	8 hours steam or 16 hours155°C; leads immersed 6mm for 2±0.5s in a solder bath at 235±5° C	Good tinning (≥ 95% covered) ; no damage

IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TESTS	PROCEDURE	REQUEREMENTS
4.18	Tb	Resistance to soldering heat	Thermal shock 3s; 350°C; 6mm from body:	R≤100KΩ: Δ R/R max. ± 0.1% + 0.05Ω R>100KΩ: Δ R/R max. ± 0.25% + 0.05Ω
4.19	(14)Na	Rapid change of temperature	30 minutes at LCT and 30 minutes at UCT; 5 cycles: R≤100KΩ R>100KΩ	No visual damage $\Delta R/R \text{ máx.} \pm 0.1\% + 0.05\Omega$ $\Delta R/R \text{ máx.} \pm 0.25\% + 0.05\Omega$
4.22	Fc	Vibration	Frequency 10 to 500Hz; displacement 1.5 mm or acceleration 10g; 3directions; total 6 hours (3 x 2 hours)	no damage Δ R/R max. ± 0.1% + 0.05 Ω
4.23		Climatic sequence:		R_{isol} min. $10^3 M\Omega$
4.23.3	30(Db)	Damp heat (accelerated) 1 st cycle		
4.23.6	30(Db)	Damp heat (accelerated) remaining cycles	6 days; 55°C; 95 a 98% R.H: R≤ 100KΩ R> 100KΩ	Δ R/R max. ± 0.5% + 0.05 Ω Δ R/R max. ± 1% + 0.05 Ω
4.24.2	3(Ca)	Damp heat (stead y state) (IEC)	56 days; 40°C; 90 to 95% RH: loaded with 0.01 Pn (IEC steps: 4 to 100V): $R \le 100 \text{K}\Omega$ R> 100KΩ	$R_{\rm isol}$ min. $10^3{\rm M}\Omega$ $\Delta R/R$ max. \pm 0.5%+ 0.05 Ω $\Delta R/R$ max. : \pm 1%+0.05 Ω .
4.25.1		Endurance (at 70°C)	1000hours; loaded with Pn or Vmax; 1.5 hours on and 0.5 hours off: R≤ 100KΩ	Δ R/R max. ± 0.5%+ 0.05Ω
				Δ R/R max. : ± 1%+0.05 Ω .
4.29	45(Xa)	Component solvent resistance	Isopropyl alcohol or H ₂ O followed by brushing in accordance with "MIL 202 F"	No visual damage
See 2 nd amer 60115-1",	ndment to "ÏEC	Pulse load		See Figs. 3 and 4